Plastic Power Transistors

NPN Silicon DPAK For Surface Mount Applications

Designed for high-gain audio amplifier applications.

• High DC Current Gain -

$$h_{FE} = 120 \text{ (Min)} @ I_C = 500 \text{ mA}$$

= 40 (Min) @ $I_C = 2 \text{ A}$

• Low Collector-Emitter Saturation Voltage -

$$V_{CE(sat)} = 0.3 \text{ Vdc (Max)} @ I_C = 1 \text{ A}$$

• High Current-Gain - Bandwidth Product -

$$f_T = 65 \text{ MHz (Min)} @ I_C = 100 \text{ mA}$$

• Epoxy Meets UL 94 V-0 @ 0.125 in

ESD Ratings: Human Body Model, 3B > 8000 V
 Machine Model, C > 400 V

• Pb-Free Package is Available

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Base Voltage	V _{CB}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Emitter-Base Voltage	V _{EB}	5	Vdc
Collector Current Continuous Peak	IC	2 3	Adc
Base Current	I _B	0.4	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	15 0.1	W W/°C
Total Device Dissipation @ T _A = 25°C* Derate above 25°C	P _D	1.68 0.011	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction-to-Case Junction-to-Ambient*	$R_{ heta JC} \ R_{ heta JA}$	10 89.3	°C/W

^{*}These ratings are applicable when surface mounted on the minimum pad sizes recommended.

1

ON Semiconductor®

http://onsemi.com

SILICON POWER TRANSISTORS 2 AMPERES 50 VOLTS 15 WATTS

MARKING DIAGRAM

DPAK CASE 369C STYLE 1

Y = Year WW = Work Week G = Pb-Free Device

ORDERING INFORMATION

Device	Package	Shipping [†]
NJD2873T4	DPAK	2500 Units / Reel
NJD2873T4G	DPAK (Pb-Free)	2500 Units / Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	•		•	
Collector-Emitter Sustaining Voltage (Note 1) (I _C = 10 mAdc, I _B = 0)	V _{CEO(sus)}	50	-	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)	Ісво	-	100	nAdc
Emitter Cutoff Current (V _{BE} = 5 Vdc, I _C = 0)	I _{EBO}	-	100	nAdc
ON CHARACTERISTICS	•		•	
DC Current Gain (Note 1) $ \begin{aligned} &(I_C = 0.5 \text{ A, V}_{CE} = 2 \text{ V}) \\ &(I_C = 2 \text{ Adc, V}_{CE} = 2 \text{ Vdc}) \\ &(I_C = 0.75 \text{ Adc, V}_{CE} = 1.6 \text{ Vdc, } -40^{\circ}\text{C} \leq T_J \leq 150^{\circ}\text{C}) \end{aligned} $	h _{FE}	120 40 80	360 - 360	-
Collector-Emitter Saturation Voltage (Note 1) (I _C = 1 A, I _B = 0.05 A)	V _{CE(sat)}	-	0.3	Vdc
Base-Emitter Saturation Voltage (Note 1) (I _C = 1 A, I _B = 0.05 Adc)	V _{BE(sat)}	-	1.2	Vdc
Base-Emitter On Voltage (Note 1) $ \begin{aligned} &\text{(I}_C = 1 \text{ Adc, V}_{CE} = 2 \text{ Vdc)} \\ &\text{(I}_C = 0.75 \text{ Adc, V}_{CE} = 1.6 \text{ Vdc, } -40^{\circ}\text{C} \leq \text{T}_J \leq 150^{\circ}\text{C)} \end{aligned} $	V _{BE(on)}		1.2 0.95	Vdc
DYNAMIC CHARACTERISTICS				
Current-Gain - Bandwidth Product (Note 2) (I _C = 100 mAdc, V _{CE} = 10 Vdc, f _{test} = 10 MHz)	f _T	65	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz)	C _{ob}	-	80	pF

^{1.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \approx 2%. 2. f_T = $|h_{fe}| \bullet f_{test}$.

TYPICAL CHARACTERISTICS

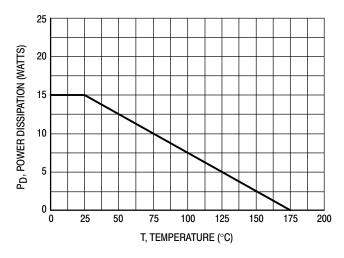


Figure 1. Power Derating

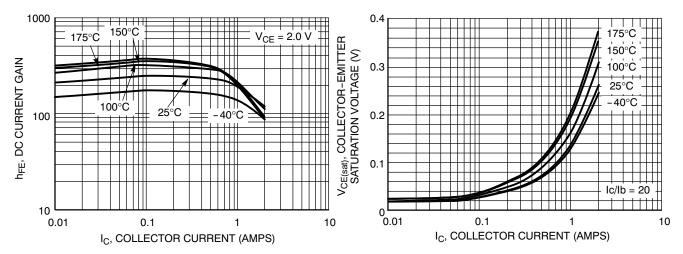


Figure 2. DC Current Gain

Figure 3. Collector-Emitter Saturation Voltage

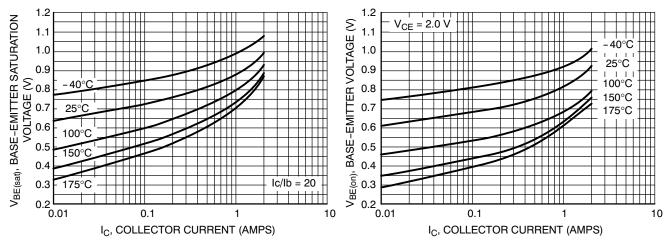


Figure 4. Base-Emitter Saturation Voltage

Figure 5. Base-Emitter Voltage

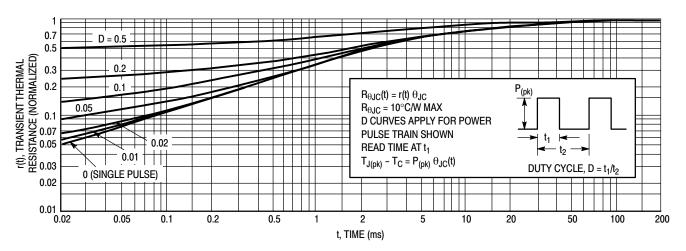
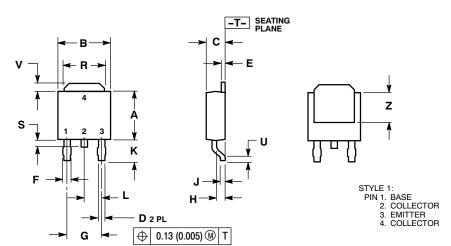
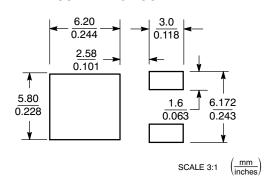



Figure 6. Thermal Response

PACKAGE DIMENSIONS

DPAK CASE 369C-01 ISSUE O



NOTES

- 1. DIMENSIONING AND TOLERANCING
- PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
ם	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.180	0.180 BSC		BSC
Ŧ	0.034	0.040	0.87	1.01
7	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
٦	0.090	BSC	2.29	BSC
R	0.180	0.215	4.57	5.45
s	0.025	0.040	0.63	1.01
U	0.020		0.51	
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered radiations of semiconduction Components industries, LC (SCILLC) and see the registered radiations of semiconductor components industries, the products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative